Create Journals
Update Journals

Journals
Find Users
Random

Read
Search
Create New

Communities
Latest News
How to Use

Support
Privacy
T.O.S.

Legal
Username:
Password:

Keiper Tech (keipertech) wrote,
@ 2012-08-01 14:10:00
Previous Entry  Add to memories!  Add to Topic Directory  Tell a Friend!  Next Entry

    Hydrogen Fuel Cells - KeiperTech an innovator in the industry
    each and every one of the fritter away starting oil cell be capable of be recycled as well as the electrochemical process can naturally be upturned through electrolysis, which can be motorized from renewable sources .
    Hydrogen Fuel Cells



    Hydrogen has the peak energy-to-weight relation amount of one gas Its small mass seeing more over under gas or a liquor resource so as to big volumes be requisite toward bear the force equal of straight fuel. This bonus the suppression problems requiring serious tanks raise challenges for the portable make use of of hydrogen fuel cells. The the ground good of fuel cells does not move toward close up to production up and about for the difference in storage volumes. Even by the side of 350 block heaviness it requires 11 times the size of hydrogen than that of gasoline for the equivalent energy, and (including containment) eight times the weight. Even liquid hydrogen requires four times the volume and three times the weight, and liquefaction can cost as much as a 40 percent energy penalty.



    Alternative storage methods, such as chemical binding in hydrides or sorption in nano-tubes, continue to be researched, with no clear solutions yet fully demonstrated. The alternative to carrying a fossil fuel for onboard production of hydrogen solves none of the environmental issues. However, onboard hydrogen production from other chemical reactions or biofuels remains possible. For example, Millennium Cell's Hydrogen on Demand system generates pure hydrogen from sodium borohydride. Dissolved in water and passed through a proprietary catalyst chamber, sodium borohydride releases pure hydrogen on demand. (Borohydride comes from sodium borate, commonly known as borax, which is found in substantial natural reserves globally.)



    Hydrogen fuel cell types can be classified by their operating temperatures as either moderate or high temperature. Moderate-temperature fuel cells include alkaline, proton exchange membrane (PEM), polymer electrolyte, direct methanol (related to PEM), and solid acid fuel cell. High-temperature fuel cells include phosphoric acid, molten carbonate (sometimes called direct fuel cells), and solid oxide. Each has certain advantages and disadvantages (e.g., PEM cells have been harnessed for transportation because of ease in rapid start-up and load following, whereas solid oxide fuel cells require long start-up times but are much more tolerant of fuel impurities).
    Of the many potential types of fuel cells, zinc-air (ZAFC) technologies show particular promise and are being rapidly commercialized. ZAFCs use the electro potential between zinc and oxygen, which provides theoretical efficiency limits higher than for hydrogen/oxygen and has electrochemical reversibility. Zinc carries a unique set of properties that provide advantages over hydrogen. These include high volumetric energy density, high specific energy, good conductivity, abundance, low cost, low toxicity, and ease of handling (especially compared with hydrogen).
    --
    KeiperTech is the industry leader in Commercial 120 Volt HHO Torch Systems. Contact them today at info@keipertech.com.


(Read comments)

Post a comment in response:

From:
 
Username:  Password: 
Subject:
No HTML allowed in subject
 

No Image
 

 Don't auto-format:
Message:
Enter the security code below.



Allowed HTML: <a> <abbr> <acronym> <address> <area> <b> <bdo> <big> <blockquote> <br> <caption> <center> <cite> <code> <col> <colgroup> <dd> <dd> <del> <dfn> <div> <dl> <dt> <dt> <em> <font> <h1> <h2> <h3> <h4> <h5> <h6> <hr> <i> <img> <ins> <kbd> <li> <li> <map> <marquee> <ol> <p> <pre> <q> <s> <samp> <small> <span> <strike> <strong> <sub> <sup> <table> <tbody> <td> <tfoot> <th> <thead> <tr> <tt> <u> <ul> <var> <xmp>
© 2002-2008. Blurty Journal. All rights reserved.